7 results (0,14313 seconds)

Brand

Merchant

Price (EUR)

Reset filter

Products
From
Shops

Randomized Phase II Cancer Clinical Trials

Randomized Phase II Cancer Clinical Trials

In cancer research a traditional phase II trial is designed as a single-arm trial that compares the experimental therapy to a historical control. This simple trial design has led to several adverse issues including increased false positivity of phase II trial results and negative phase III trials. To rectify these problems oncologists and biostatisticians have begun to use a randomized phase II trial that compares an experimental therapy with a prospective control therapy. Randomized Phase II Cancer Clinical Trials explains how to properly select and accurately use diverse statistical methods for designing and analyzing phase II trials. The author first reviews the statistical methods for single-arm phase II trials since some methodologies for randomized phase II trials stem from single-arm phase II trials and many phase II cancer clinical trials still use single-arm designs. The book then presents methods for randomized phase II trials and describes statistical methods for both single-arm and randomized phase II trials. Although the text focuses on phase II cancer clinical trials the statistical methods covered can also be used (with minor modifications) in phase II trials for other diseases and in phase III cancer clinical trials. Suitable for cancer clinicians and biostatisticians this book shows how randomized phase II trials with a prospective control resolve the shortcomings of traditional single-arm phase II trials. It provides readers with numerous statistical design and analysis methods for randomized phase II trials in oncology.

GBP 44.99
1

A Systematic Approach to Learning Robot Programming with ROS

A Systematic Approach to Learning Robot Programming with ROS

A Systematic Approach to Learning Robot Programming with ROS provides a comprehensive introduction to the essential components of ROS through detailed explanations of simple code examples along with the corresponding theory of operation. The book explores the organization of ROS how to understand ROS packages how to use ROS tools how to incorporate existing ROS packages into new applications and how to develop new packages for robotics and automation. It also facilitates continuing education by preparing the reader to better understand the existing on-line documentation. The book is organized into six parts. It begins with an introduction to ROS foundations including writing ROS nodes and ROS tools. Messages Classes and Servers are also covered. The second part of the book features simulation and visualization with ROS including coordinate transforms. The next part of the book discusses perceptual processing in ROS. It includes coverage of using cameras in ROS depth imaging and point clouds and point cloud processing. Mobile robot control and navigation in ROS is featured in the fourth part of the book The fifth section of the book contains coverage of robot arms in ROS. This section explores robot arm kinematics arm motion planning arm control with the Baxter Simulator and an object-grabber package. The last part of the book focuses on system integration and higher-level control including perception-based and mobile manipulation. This accessible text includes examples throughout and C++ code examples are also provided at https://github. com/wsnewman/learning_ros

GBP 62.99
1

Survival Analysis

Survival Analysis

Survival analysis generally deals with analysis of data arising from clinical trials. Censoring truncation and missing data create analytical challenges and the statistical methods and inference require novel and different approaches for analysis. Statistical properties essentially asymptotic ones of the estimators and tests are aptly handled in the counting process framework which is drawn from the larger arm of stochastic calculus. With explosion of data generation during the past two decades survival data has also enlarged assuming a gigantic size. Most statistical methods developed before the millennium were based on a linear approach even in the face of complex nature of survival data. Nonparametric nonlinear methods are best envisaged in the Machine Learning school. This book attempts to cover all these aspects in a concise way. Survival Analysis offers an integrated blend of statistical methods and machine learning useful in analysis of survival data. The purpose of the offering is to give an exposure to the machine learning trends for lifetime data analysis. Features: Classical survival analysis techniques for estimating statistical functional and hypotheses testing Regression methods covering the popular Cox relative risk regression model Aalen’s additive hazards model etc. Information criteria to facilitate model selection including Akaike Bayes and Focused Penalized methods Survival trees and ensemble techniques of bagging boosting and random survival forests A brief exposure of neural networks for survival data R program illustration throughout the book

GBP 99.99
1

Sample Sizes for Clinical Trials

Sample Sizes for Clinical Trials

Sample Sizes for Clinical Trials Second Edition is a practical book that assists researchers in their estimation of the sample size for clinical trials. Throughout the book there are detailed worked examples to illustrate both how to do the calculations and how to present them to colleagues or in protocols. The book also highlights some of the pitfalls in calculations as well as the key steps that lead to the final sample size calculation. Features: Comprehensive coverage of sample size calculations including Normal binary ordinal and survival outcome data Covers superiority equivalence non-inferiority bioequivalence and precision objectives for both parallel group and crossover designs Highlights how trial objectives impact the study design with respect to both the derivation of sample formulae and the size of the study Motivated with examples of real-life clinical trials showing how the calculations can be applied New edition is extended with all chapters revised some substantially and four completely new chapters on multiplicity cluster trials pilot studies and single arm trials The book is primarily aimed at researchers and practitioners of clinical trials and biostatistics and could be used to teach a course on sample size calculations. The importance of a sample size calculation when designing a clinical trial is highlighted in the book. It enables readers to quickly find an appropriate sample size formula with an associated worked example complemented by tables to assist in the calculations.

GBP 89.99
1

Operating System Design The Xinu Approach Second Edition

Operating System Design The Xinu Approach Second Edition

An Update of the Most Practical A-to-Z Operating System BookWidely lauded for avoiding the typical black box approach found in other operating system textbooks the first edition of this bestselling book taught readers how an operating system works and explained how to build it from the ground up. Continuing to follow a logical pattern for system design Operating System Design: The Xinu Approach Second Edition removes the mystery from operating system design and consolidates the body of material into a systematic discipline. It presents a hierarchical design paradigm that organizes major operating system components in an orderly understandable manner. The book guides readers through the construction of a conventional process-based operating system using practical straightforward primitives. It gives the implementation details of one set of primitives usually the most popular set. Once readers understand how primitives can be implemented on conventional hardware they can then easily implement alternative versions. The text begins with a bare machine and proceeds step-by-step through the design and implementation of Xinu which is a small elegant operating system that supports dynamic process creation dynamic memory allocation network communication local and remote file systems a shell and device-independent I/O functions. The Xinu code runs on many hardware platforms. This second edition has been completely rewritten to contrast operating systems for RISC and CISC processors. Encouraging hands-on experimentation the book provides updated code throughout and examples for two low-cost experimenter boards: BeagleBone Black from ARM and Galileo from Intel. | Operating System Design The Xinu Approach Second Edition

GBP 39.99
1

Introduction to NFL Analytics with R

Introduction to NFL Analytics with R

It has become difficult to ignore the analytics movement within the NFL. An increasing number of coaches openly integrate advanced numbers into their game plans and commentators throughout broadcasts regularly use terms such as air yards CPOE and EPA on a casual basis. This rapid growth combined with an increasing accessibility to NFL data has helped create a burgeoning amateur analytics movement highlighted by the NFL’s annual Big Data Bowl. Because learning a coding language can be a difficult enough endeavor Introduction to NFL Analytics with R is purposefully written in a more informal format than readers of similar books may be accustomed to opting to provide step-by-step instructions in a structured jargon-free manner. Key Coverage: • Installing R RStudio and necessary packages • Working and becoming fluent in the tidyverse • Finding meaning in NFL data with examples from all the functions in the nflverse family of packages • Using NFL data to create eye-catching data visualizations • Building statistical models starting with simple regressions and progressing to advanced machine learning models using tidymodels and eXtreme Gradient Boosting The book is written for novices of R programming all the way to more experienced coders as well as audiences with differing expected outcomes. Professors can use Introduction to NFL Analytics with R to provide data science lessons through the lens of the NFL while students can use it as an educational tool to create robust visualizations and machine learning models for assignments. Journalists bloggers and arm-chair quarterbacks alike will find the book helpful to underpin their arguments by providing hard data and visualizations to back up their claims.

GBP 52.99
1

Handbook of Statistics in Clinical Oncology

Handbook of Statistics in Clinical Oncology

Many new challenges have arisen in the area of oncology clinical trials. New cancer therapies are often based on cytostatic or targeted agents which pose new challenges in the design and analysis of all phases of trials. The literature on adaptive trial designs and early stopping has been exploding. Inclusion of high-dimensional data and imaging techniques have become common practice and statistical methods on how to analyse such data have been refined in this area. A compilation of statistical topics relevant to these new advances in cancer research this third edition of Handbook of Statistics in Clinical Oncology focuses on the design and analysis of oncology clinical trials and translational research. Addressing the many challenges that have arisen since the publication of its predecessor this third edition covers the newest developments involved in the design and analysis of cancer clinical trials incorporating updates to all four parts: Phase I trials: Updated recommendations regarding the standard 3 + 3 and continual reassessment approaches along with new chapters on phase 0 trials and phase I trial design for targeted agents. Phase II trials: Updates to current experience in single-arm and randomized phase II trial designs. New chapters include phase II designs with multiple strata and phase II/III designs. Phase III trials: Many new chapters include interim analyses and early stopping considerations phase III trial designs for targeted agents and for testing the ability of markers adaptive trial designs cure rate survival models statistical methods of imaging as well as a thorough review of software for the design and analysis of clinical trials. Exploratory and high-dimensional data analyses: All chapters in this part have been thoroughly updated since the last edition. New chapters address methods for analyzing SNP data and for developing a score based on gene expression data. In addition chapters on risk calculators and forensic bioinformatics have been added. Accessible to statisticians and oncologists interested in clinical trial methodology the book is a single-source collection of up-to-date statistical approaches to research in clinical oncology.

GBP 52.99
1