3.797 resultater (0,40844 sekunder)

Mærke

Butik

Pris (EUR)

Nulstil filter

Produkter
Fra
Butikker

Glute Lab - Bret Contreras - Bog - Victory Belt Publishing - Plusbog.dk

Machine Learning Applications Using Python - Puneet Mathur - Bog - APress - Plusbog.dk

The Human Factor in Machine Translation - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning for Decision Makers - Patanjali Kashyap - Bog - APress - Plusbog.dk

Machine Learning for Decision Makers - Patanjali Kashyap - Bog - APress - Plusbog.dk

This new and updated edition takes you through the details of machine learning to give you an understanding of cognitive computing, IoT, big data, AI, quantum computing, and more. The book explains how machine learning techniques are used to solve fundamental and complex societal and industry problems. This second edition builds upon the foundation of the first book, revises all of the chapters, and updates the research, case studies, and practical examples to bring the book up to date with changes that have occurred in machine learning. A new chapter on quantum computers and machine learning is included to prepare you for future challenges. Insights for decision makers will help you understand machine learning and associated technologies and make efficient, reliable, smart, and efficient business decisions. All aspects of machine learning are covered, ranging from algorithms to industry applications. Wherever possible, required practical guidelines and best practices related to machine learning and associated technologies are discussed. Also covered in this edition are hot-button topics such as ChatGPT, superposition, quantum machine learning, and reinforcement learning from human feedback (RLHF) technology. Upon completing this book, you will understand machine learning, IoT, and cognitive computing and be prepared to cope with future challenges related to machine learning. What You Will LearnMaster the essentials of machine learning, AI, cloud, and the cognitive computing technology stackUnderstand business and enterprise decision-making using machine learningBecome familiar with machine learning best practicesGain knowledge of quantum computing and quantum machine learningWho This Book Is ForManagers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them

DKK 476.00
1

Functional Reverse Engineering of Machine Tools - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning for Healthcare - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning for Healthcare - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector. The features of this book include: - - A unique and complete focus on applications of machine learning in the healthcare sector. - - - An examination of how data analysis can be done using healthcare data and bioinformatics. - - - An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values. - - - An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors. -

DKK 467.00
1

Distributed Machine Learning Patterns - Yuan Tang - Bog - Manning Publications - Plusbog.dk

Distributed Machine Learning Patterns - Yuan Tang - Bog - Manning Publications - Plusbog.dk

Practical patterns for scaling machine learning from your laptop to a distributed cluster. In Distributed Machine Learning Patterns you will learn how to: - - Apply distributed systems patterns to build scalable and reliable machine learning projects - - Construct machine learning pipelines with data ingestion, distributed training, model serving, and more - - Automate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows - - Make trade offs between different patterns and approaches - - Manage and monitor machine learning workloads at scale - Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns , you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. about the technology Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure. about the book Distributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you''ve mastered these cutting edge techniques, you''ll put them all into practice and finish up by building a comprehensive distributed machine learning system.

DKK 459.00
1

Machine Intelligence - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Intelligence - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machines are being systematically empowered to be interactive and intelligent in their operations, offerings. and outputs. There are pioneering Artificial Intelligence (AI) technologies and tools. Machine and Deep Learning (ML/DL) algorithms, along with their enabling frameworks, libraries, and specialized accelerators, find particularly useful applications in computer and machine vision, human machine interfaces (HMIs), and intelligent machines. Machines that can see and perceive can bring forth deeper and decisive acceleration, automation, and augmentation capabilities to businesses as well as people in their everyday assignments. Machine vision is becoming a reality because of advancements in the computer vision and device instrumentation spaces. Machines are increasingly software-defined. That is, vision-enabling software and hardware modules are being embedded in new-generation machines to be self-, surroundings, and situation-aware. Machine Intelligence: Computer Vision and Natural Language Processing emphasizes computer vision and natural language processing as drivers of advances in machine intelligence. The book examines these technologies from the algorithmic level to the applications level. It also examines the integrative technologies enabling intelligent applications in business and industry. Features: - Motion images object detection over voice using deep learning algorithms - Ubiquitous computing and augmented reality in HCI - Learning and reasoning in Artificial Intelligence - Economic sustainability, mindfulness, and diversity in the age of artificial intelligence and machine learning - Streaming analytics for healthcare and retail domains Covering established and emerging technologies in machine vision, the book focuses on recent and novel applications and discusses state-of-the-art technologies and tools.

DKK 630.00
1

Machine Learning Using R - Karthik Ramasubramanian - Bog - APress - Plusbog.dk

Applied Machine Learning Using mlr3 in R - - Bog - Taylor & Francis Ltd - Plusbog.dk

Applied Machine Learning Using mlr3 in R - - Bog - Taylor & Francis Ltd - Plusbog.dk

mlr3 is an award-winning ecosystem of R packages that have been developed to enable state-of-the-art machine learning capabilities in R. Applied Machine Learning Using mlr3 in R gives an overview of flexible and robust machine learning methods, with an emphasis on how to implement them using mlr3 in R. It covers various key topics, including basic machine learning tasks, such as building and evaluating a predictive model; hyperparameter tuning of machine learning approaches to obtain peak performance; building machine learning pipelines that perform complex operations such as pre-processing followed by modelling followed by aggregation of predictions; and extending the mlr3 ecosystem with custom learners, measures, or pipeline components. Features: - In-depth coverage of the mlr3 ecosystem for users and developers - Explanation and illustration of basic and advanced machine learning concepts - Ready to use code samples that can be adapted by the user for their application - Convenient and expressive machine learning pipelining enabling advanced modelling - Coverage of topics that are often ignored in other machine learning books The book is primarily aimed at researchers, practitioners, and graduate students who use machine learning or who are interested in using it. It can be used as a textbook for an introductory or advanced machine learning class that uses R, as a reference for people who work with machine learning methods, and in industry for exploratory experiments in machine learning.

DKK 656.00
1

Machine Learning for Networking - - Bog - Springer Nature Switzerland AG - Plusbog.dk

Machine Learning for Networking - - Bog - Springer Nature Switzerland AG - Plusbog.dk

Machine Learning for Networking - - Bog - Springer Nature Switzerland AG - Plusbog.dk

Coverbal Synchrony in Human-Machine Interaction - - Bog - Taylor & Francis Ltd - Plusbog.dk

Coverbal Synchrony in Human-Machine Interaction - - Bog - Taylor & Francis Ltd - Plusbog.dk

Embodied conversational agents (ECA) and speech-based human–machine interfaces can together represent more advanced and more natural human–machine interaction. Fusion of both topics is a challenging agenda in research and production spheres. The important goal of human–machine interfaces is to provide content or functionality in the form of a dialog resembling face-to-face conversations. All natural interfaces strive to exploit and use different communication strategies that provide additional meaning to the content, whether they are human–machine interfaces for controlling an application or different ECA-based human–machine interfaces directly simulating face-to-face conversation. Coverbal Synchrony in Human-Machine Interaction presents state-of-the-art concepts of advanced environment-independent multimodal human–machine interfaces that can be used in different contexts, ranging from simple multimodal web-browsers (for example, multimodal content reader) to more complex multimodal human–machine interfaces for ambient intelligent environments (such as supportive environments for elderly and agent-guided household environments). They can also be used in different computing environments—from pervasive computing to desktop environments. Within these concepts, the contributors discuss several communication strategies, used to provide different aspects of human–machine interaction.

DKK 643.00
1

Machine-to-Machine Communications - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine-to-Machine Communications - - Bog - Taylor & Francis Ltd - Plusbog.dk

With the number of machine-to-machine (M2M)–enabled devices projected to reach 20 to 50 billion by 2020, there is a critical need to understand the demands imposed by such systems. Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications offers rigorous treatment of the many facets of M2M communication, including its integration with current technology. Presenting the work of a different group of international experts in each chapter, the book begins by supplying an overview of M2M technology. It considers proposed standards, cutting-edge applications, architectures, and traffic modeling and includes case studies that highlight the differences between traditional and M2M communications technology. - Details a practical scheme for the forward error correction code design - Investigates the effectiveness of the IEEE 802.15.4 low data rate wireless personal area network standard for use in M2M communications - Identifies algorithms that will ensure functionality, performance, reliability, and security of M2M systems - Illustrates the relationship between M2M systems and the smart power grid - Presents techniques to ensure integration with and adaptation of existing communication systems to carry M2M traffic Providing authoritative insights into the technologies that enable M2M communications, the book discusses the challenges posed by the use of M2M communications in the smart grid from the aspect of security and proposes an efficient intrusion detection system to deal with a number of possible attacks. After reading this book, you will develop the understanding required to solve problems related to the design, deployment, and operation of M2M communications networks and systems.

DKK 505.00
1

Grokking Machine Learning - Luis Serrano - Bog - Manning Publications - Plusbog.dk

Grokking Machine Learning - Luis Serrano - Bog - Manning Publications - Plusbog.dk

It''s time to dispel the myth that machine learning is difficult. Grokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math. No specialist knowledge is required to tackle the hands-on exercises using readily available machine learning tools! In Grokking Machine Learning , expert machine learning engineer Luis Serrano introduces the most valuable ML techniques and teaches you how to make them work for you. Practical examples illustrate each new concept to ensure you’re grokking as you go. You’ll build models for spam detection, language analysis, and image recognition as you lock in each carefully-selected skill. Packed with easy-to-follow Python-based exercises and mini-projects, this book sets you on the path to becoming a machine learning expert. Key Features · Different types of machine learning, including supervised and unsupervised learning · Algorithms for simplifying, classifying, and splitting data · Machine learning packages and tools · Hands-on exercises with fully-explained Python code samples For readers with intermediate programming knowledge in Python or a similar language. About the technology Machine learning is a collection of mathematically-based techniques and algorithms that enable computers to identify patterns and generate predictions from data. This revolutionary data analysis approach is behind everything from recommendation systems to self-driving cars, and is transforming industries from finance to art. Luis G. Serrano has worked as the Head of Content for Artificial Intelligence at Udacity and as a Machine Learning Engineer at Google, where he worked on the YouTube recommendations system. He holds a PhD in mathematics from the University of Michigan, a Bachelor and Masters from the University of Waterloo, and worked as a postdoctoral researcher at the University of Quebec at Montreal. He shares his machine learning expertise on a YouTube channel with over 2 million views and 35 thousand subscribers, and is a frequent speaker at artificial intelligence and data science conferences.

DKK 448.00
1

Machine Learning in Clinical Neuroimaging - - Bog - Springer International Publishing AG - Plusbog.dk

Machine Learning for Business Analytics - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning for Business Analytics - - Bog - Taylor & Francis Ltd - Plusbog.dk

Machine Learning is an integral tool in a business analyst’s arsenal because the rate at which data is being generated from different sources is increasing and working on complex unstructured data is becoming inevitable. Data collection, data cleaning, and data mining are rapidly becoming more difficult to analyze than just importing information from a primary or secondary source. The machine learning model plays a crucial role in predicting the future performance and results of a company. In real-time, data collection and data wrangling are the important steps in deploying the models. Analytics is a tool for visualizing and steering data and statistics. Business analysts can work with different datasets -- choosing an appropriate machine learning model results in accurate analyzing, forecasting the future, and making informed decisions. The global machine learning market was valued at $1.58 billion in 2017 and is expected to reach $20.83 billion in 2024 -- growing at a CAGR of 44.06% between 2017 and 2024. The authors have compiled important knowledge on machine learning real-time applications in business analytics. This book enables readers to get broad knowledge in the field of machine learning models and to carry out their future research work. The future trends of machine learning for business analytics are explained with real case studies. Essentially, this book acts as a guide to all business analysts. The authors blend the basics of data analytics and machine learning and extend its application to business analytics. This book acts as a superb introduction and covers the applications and implications of machine learning. The authors provide first-hand experience of the applications of machine learning for business analytics in the section on real-time analysis. Case studies put the theory into practice so that you may receive hands-on experience with machine learning and data analytics. This book is a valuable source for practitioners, industrialists, technologists, and researchers.

DKK 542.00
1

Model-Based Machine Learning - John Winn - Bog - Taylor & Francis Inc - Plusbog.dk

Model-Based Machine Learning - John Winn - Bog - Taylor & Francis Inc - Plusbog.dk

Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: - Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. - Explains machine learning concepts as they arise in real-world case studies. - Shows how to diagnose, understand and address problems with machine learning systems. - Full source code available, allowing models and results to be reproduced and explored. - Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.

DKK 731.00
1