41 resultater (0,27555 sekunder)

Mærke

Butik

Pris (EUR)

Nulstil filter

Produkter
Fra
Butikker

Advanced Parallel Processing Technologies - - Bog - Springer International Publishing AG - Plusbog.dk

Introduction to Parallel Computing - Bostjan Slivnik - Bog - Springer International Publishing AG - Plusbog.dk

Chip Multiprocessor Architecture - James Laudon - Bog - Springer International Publishing AG - Plusbog.dk

Chip Multiprocessor Architecture - James Laudon - Bog - Springer International Publishing AG - Plusbog.dk

Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP's cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP's performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs

DKK 285.00
1

Introduction to Data Science - Santi Segui - Bog - Springer International Publishing AG - Plusbog.dk

Artificial Evolution - - Bog - Springer International Publishing AG - Plusbog.dk

Centaur Art - Bog af Remo Pareschi - Hardback

Cloud-Based RDF Data Management - Zoi Kaoudi - Bog - Springer International Publishing AG - Booktok.dk

Cloud-Based RDF Data Management - Zoi Kaoudi - Bog - Springer International Publishing AG - Booktok.dk

Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.

DKK 288.00
2

Layout Techniques in MOSFETs - Salvador Pinillos Gimenez - Bog - Springer International Publishing AG - Plusbog.dk

DKK 260.00
1

Theoretical Knowledge in the Mohist Canon - William G. Boltz - Bog - Springer International Publishing AG - Booktok.dk

Risk Communication for the Future - - Bog - Springer International Publishing AG - Booktok.dk

Supercomputing Frontiers - - Bog - Springer International Publishing AG - Booktok.dk